- BARTELL, L. S., ROTH, E. A., HOLLOWELL, C. D., KUCHITSU, K. & YOUNG, J. E. (1965). J. Chem. Phys. 42, 2683–2686.
- DURANT, F., BUFKENS, F., LEFEVRE, F., EVRARD, G. & MICHEL, A. (1985). Acta Cryst. C41, 243-246.
- FALLON, G. D., FITZMAURICE, N. J., JACKSON, W. R. & PERLMUTTER, P. (1986). Acta Cryst. C42, 1654–1655.
- FONSECA, I., MARTÍNEZ-CARRERA, S. & GARCÍA-BLANCO, S. (1986). Acta Cryst. C42, 1792–1794.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KLOKOL, G. V., SHARANINA, L. G., NESTEROV, V. N., SHKLOVER, V. E., SHARANIN, YU. A. & STRUCHKOV, YU. T. (1987). *Zh.* Org. Khim. 23, 412–421.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MARCHALÍN, Š., PAVLÍKOVÁ, F. & ILAVSKÝ, D. (1989). Collect. Czech. Chem. Commun. 54, 1336.
- SHARANINA, L. G., NESTEROV, V. N., KLOKOL, G. V., RODINOVSKAYA, L. A., SHKLOVER, V. E., SHARANIN, YU. A., STRUCHKOV, YU. T. & PROMONENKOV, V. K. (1986). *Zh. Org. Khim.* 22, 1315–1322.
- UKHIN, L. YU., BESSONOV, V. V., YANOVSKII, A. I., TIMOFEEVA, T. V., FURMANOVA, N. G. & STRUCHKOV, YU. T. (1980). *Khim. Geterotsikl. Soedin.* pp. 461–467.

Acta Cryst. (1990). C46, 791-797

Structures of Four Pyrazolo[3,4-*b*]pyridine Nucleosides

BY STEVEN B. LARSON,* YOGESH S. SANGHVI, GANAPATHI R. REVANKAR AND ROLAND K. ROBINS ICN-Nucleic Acid Research Institute, 3300 Hyland Avenue Costa Mesa, CA 92626, USA

(Received 13 March 1989; accepted 13 July 1989)

Abstract. 4-Methoxy-1-(2-deoxy- β -D-erythro-pentofuranosyl)-1*H*-pyrazolo[3,4-*b*]pyridine (1), $C_{12}H_{15}$ - N_3O_4 , $M_r = 265.27$, orthorhombic, $P2_12_12_1$, a =6.9930 (10), b = 9.231 (2), c = 19.119 (4) Å, V =1234.2 (4) Å³, Z = 4, $D_x = 1.428 \text{ g cm}^{-3}$, Cu K α (λ = 1.54178 Å), $\mu = 8.718$ cm⁻¹, F(000) = 560, T =295 K, R = 0.0361 for 2330 reflections $(F \ge 4\sigma_F)$; 1-(2-deoxy-β-D-erythro-pentofuranosyl)-1H-pyrazolo[3,4-b]pyridin-4(7*H*)-one (2), C₁₁H₁₃N₃O₄, M_r = 251.24, monoclinic, C2, a = 17.506 (3), b = 8.512 (2), c = 7.941 (3) Å, $\beta = 110.59$ (3)°, V = 1107.7 (6) Å³, Z = 4, $D_x = 1.506 \text{ g cm}^{-3}$, Cu K α ($\lambda = 1.54178 \text{ Å}$), μ $= 9.406 \text{ cm}^{-1}, F(000) = 528, T = 295 \text{ K}, R = 0.0369$ for 1874 reflections $(F \ge 4\sigma_F)$; 1- β -D-arabinofuranosyl-1*H*-pyrazolo[3,4-*b*]pyridin-4(7*H*)-one (3) dihydrate, $C_{11}H_{13}N_3O_5.2H_2O$, $M_r = 303.27$, monoclinic, $P2_1$, a = 4.8604 (3), b = 12.6573 (15), c = $10.9802 (17) \text{ Å}, \beta = 91.17 (6)^{\circ}, V = 675.36 (13) \text{ Å}^3, Z$ = 2, $D_x = 1.491 \text{ g cm}^{-3}$, Cu K α ($\lambda = 1.54178 \text{ Å}$), μ $= 10.325 \text{ cm}^{-1}$, F(000) = 320, T = 295 K, R = 0.0291for 2692 reflections ($F \ge 4\sigma_F$); 1- β -D-ribofuranosyl-1H-pyrazolo[3,4-b]pyridine (4), $C_{11}H_{13}N_{3}O_{4}$, $M_{r} =$ 251.24, orthorhombic, $P2_12_12_1$, a = 6.9252 (6), b =8.288 (6), c = 19.431 (3) Å, V = 1115.2 (8) Å³, Z = 4, $D_x = 1.496$ g cm⁻³, Cu K α ($\lambda = 1.54178$ Å), $\mu =$ 9.342 cm^{-1} , F(000) = 528, T = 295 K, R = 0.0298 for2045 reflections ($F \ge 4\sigma_F$). The 4-hydroxy compounds (2) and (3) exist as the oxo tautomers with N7 protonated. The pyrazole-pyridine dihedral

angles are 0.44 (7), 1.00 (13), 0.47 (7) and 0.95 (6)° for (1)–(4), respectively. Compounds (1) and (3) are in the syn conformation with stabilizing intramolecular O5'…N7 hydrogen bonds; (2) and (4) are in the anti conformation. The sugar moieties have conformations of ²E (C2'-endo), $_{4}T^{3}$ (C4'-exo), $^{3}T_{4}$ (C3'endo) and $_{3}T^{2}$ (C3'-exo) for (1)-(4), respectively. Compound (4) has nearly complete, antiparallel base stacking.

Introduction. For two decades the search for beneficial drugs has included the synthesis and biological evaluation of nucleosides containing modified purine rings (Revankar, Gupta, Adams, Dalley, McKernan, Cook, Canonico & Robins, 1984; Meyer, Revankar, Cook, Ehler, Schweizer & Robins, 1980; Cline, Panzica & Townsend, 1978). The pyrazolo[3,4-b]pyridine nucleosides presented in this study [(1)-(4)]were synthesized (Sanghvi, Larson, Willis, Robins & Revankar, 1989) as examples of nitrogen modification in the purine ring system. These compounds possess the 1-deaza feature of 1-deazaadenosine [(5)] and the pyrazole ring in place of the imidazole ring as found in $1-\beta$ -D-ribofuranosylpyrazolo[3,4-d]pyrimidin-4(5H)-one [(6), allopurinol ribonucleoside]. Allopurinol ribonucleoside (Lichtenthaler & Cuny, 1981; Cottam, Petrie, McKernan, Goebel, Dalley, Davidson, Robins & Revankar, 1984) and 1-deazaadenosine (Itoh, Kitano & Mizuno, 1972; Cristalli, Franchetti, Grifantini, Vittori, Bordoni & Geroni, 1987) possess significant chemotherapeutic proper-

© 1990 International Union of Crystallography

^{*} Author to whom correspondence should be addressed.

ties; recently the latter has been shown to have a high affinity for adenosine receptors (Cristalli, Franchetti, Grifantini, Vittori, Klotz & Lohse, 1988). Little or no antiviral and antitumor activity results from combining these features in the heterocycle. The structural studies were initiated to verify the site of glycosylation, the anomeric configuration and the general conformational features of representatives of the 2'-deoxyribofuranosides [(1), (2)], the arabinofuranosides [(3)] and the ribofuranosides [(4)] of this class of purine analogs.

Experimental. Compounds (1)–(4) were synthesized by the sodium salt glycosylation procedure utilizing the appropriate heterocycle and halogenose followed by removal of the protecting groups as recently reported (Sanghvi *et al.*, 1989). Crystals of (1) grew from ethanol/ethyl acetate (9:1, v/v) as prisms. Crystals of (2) grew from ethanol/water (1:1, v/v) as long, thin plates. Crystals of (3) and (4) grew from ethanol, (3) as irregular needles and (4) as hexagonal needles. Table 1 summarizes data collection and refinement of all structures. Data for each compound were corrected for Lorentz, polarization, decay and absorption. The absorption corrections were based on measurements of crystal faces to define the shape and size of the crystals used for data collection.

Crystallographic coordinates of all non-H atoms of each compound [including the two water molecules in (3)] were determined with SHELXS86 (Sheldrick, 1986). H-atom positions for each compound were obtained from a difference map as peaks of density 0.36-0.77, 0.55-0.90, 0.28-0.87 and 0.50- $1.05 \text{ e} \text{ Å}^{-3}$ and at *R* values of 0.066, 0.061, 0.053 and 0.059 for (1)-(4), respectively. All positional and thermal parameters were refined (only H atoms were treated sisotropically) for each structure using the program SHELX76 (Sheldrick, 1976). Scattering factors and anomalous-dispersion corrections were taken from International Tables for X-ray Crystallography (1974) except those of H which were taken from Stewart, Davidson & Simpson (1965). Data were reduced with SDP-Plus (Frenz, 1985); leastsquares-planes program from Cordes (1983). Figures were drawn with ORTEPII (Johnson, 1976); all thermal ellipsoids are drawn at the 50% probability level.*

Discussion. The atomic coordinates are listed in Tables 2–5; bond lengths and bond angles are listed in Table 6. The atom labeling is shown in Figs. 1–4 for compounds (1)–(4), respectively. The site of glycosylation at N1 of the pyrazolo[3,4-*b*]pyridine ring system and the anomeric configuration as β were confirmed for all nucleosides studied.

The aglycon moiety. The 4-hydroxy compounds [(2) and (3)] exist in the solid state as the oxo tautomer protonated at N7. In (3) this proton is donated to O5' intramolecularly whereas in (2) it is donated to O5' intermolecularly. In each structure, the pyrazolopyridine ring systems are essentially planar (r.m.s. deviations less than 0.012 Å for each structure); the dihedral angles between the planes of the fused pyrazole and pyridine rings are $0.44(7)^{\circ}$ for (1), $1.00(13)^{\circ}$ for (2), $0.47(7)^{\circ}$ for (3), and $0.95(6)^{\circ}$ for (4). The methoxy group in (1) is nearly coplanar [dihedral angle of $0.56 (9)^{\circ}$] with the pyrazolopyridine plane, such that the methyl group is *trans* to the pyrazole ring. The 4-oxopyrazolopyridine systems of (2) and (3) are essentially identical but significantly different from the pyrazolopyridine systems of (1) and (4), which, despite the lack of a 4-methoxy group in (4), are nearly identical. In comparison to (1) and (4), the conjugated group at C4 in (2) and (3) lengthens the C4-C9, C4-C5 and C6-N7 bonds and shortens the C5-C6 bond in agreement with the predominant canonical form of these molecules. The N2-C3 and N1-N2 bonds are slightly longer in the 4-oxo compounds (2) and (3).

The glycosyl linkage and overall conformation. The glycosyl bonds are 1.449 (2) and 1.452 (3) Å for the 2'-deoxy compounds [(1) and (2)], 1.462 (2) Å for the arabinose structure [(3)] and 1.441 (2) Å for the ribose compound [(4)]. Atom C1' in (1) is nearly coplanar [deviation: -0.012 (2) Å] with the heterocycle whereas in (2), (3) and (4) the deviations are -0.188 (3), 0.2377 (15) and 0.163 (2) Å, respectively. Table 7 tabulates conformational properties. Structures (1) and (3) are in the syn conformation whereas the other two are in anti conformations. The two syn structures are stabilized by intramolecular hydrogen bonds (Table 8), but the bond in (1) is O5'—H…N7 whereas in (3) the bond is N7—H…O5'. There is no intramolecular hydrogen bonding in (2) or (4).

^{*} Tables of anisotropic thermal parameters, bond lengths and angles involving H atoms, torsion angles, least-squares planes and structure factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52449 (46 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Crystallographic summary for (1), (2), (3) and (4)

(1)	(2)	(3)	(4)				
ω -2 θ scan							
Scan 0.25 times scan range before and after scan							
$1.0 + 0.15 \tan \theta$	$1.0 + 0.15 \tan \theta$	$0.80 + 0.15 \tan \theta$	$0.80 + 0.15 \tan \theta$				
1.3-8.2	1.3-16.5	1.3-16.5	1.3-16.5				
3-152	3-152	3-152	3-152				
38-4	29.6	22.2	55-1				
1.000-1.041	1.000-1.002	1.000-1.002	1.000-1.000				
0,0,-24	0, - 10, - 9	0, -15, -13	0, -10, -24				
8,11,24	22,10,9	6,15,13	8,10,24				
2927, 2565	2377, 2250	3112, 2784	5025, 2332				
0.026	0.019	0.013	0.028				
$0.35 \times 0.30 \times 0.165$	$0.425 \times 0.22 \times 0.035$	$0.42 \times 0.175 \times 0.15$	0·30 × 0·14 × 0·095				
0.0116	0.00350	0.00820	0.00292				
{001},{011},{102}	{100},{010},{001}	{011},100,T01	{011},{001}				
111,210,1T0		ToT,010	100,T02				
0.745-0.881	0.774-0.967	0.580-0.887	0.818-0.934				
2330	1874	2692	2045				
233	215	258	216				
1·3 (2) × 10 ⁻⁶	3·8 (10) × 10 ⁻⁷	3·6 (4) × 10 ^{−6}	1·8 (2) × 10 ⁻⁶				
1.576	1.391	1.567	1.333				
0.0361, 0.0476	0.0369, 0.0466	0.0291, 0.0425	0.0298, 0.0381				
0.0423	0.0556	0.0312	0.0401				
0.002	0.007	0.001	0.003				
0.25, -0.26	0.30, -0.31	0.34, -0.28	0.36, -0.23				
	(1) $1.0 + 0.15\tan\theta$ 1.3 - 8.2 3 - 152 38.4 1.000 - 1.041 0.0, -24 8,11,24 2927, 2565 0.026 $0.35 \times 0.30 \times 0.165$ 0.0116 $\{001\}, \{011\}, \{102\}$ 111, 210, 170 0.745 - 0.881 2330 233 $1.3 (2) \times 10^{-6}$ 1.576 0.0361, 0.0476 0.0423 0.002 0.025, -0.26	(1) (2) $\omega-2\theta \sec \omega$ Scan 0.25 times scan range bef 1.0 + 0.15tan θ 1.3 +8·2 3-152 38.4 29.6 1.000-1.041 1.000-1.005 0,0, -24 0, -10, -9 8,11,24 22,10,9 2927, 2565 2377, 2250 0.026 0.019 0.35 × 0.30 × 0.165 0.425 × 0.22 × 0.035 0.0116 0.0350 (001),{(011),{(102)} 111,210,110 0.745-0.881 0.774-0.967 2330 1874 233 215 1.3 (2) × 10 ⁻⁶ 3.8 (10) × 10 ⁻⁷ 1.576 1.391 0.0366, 0.0476 0.0369, 0.0466 0.0423 0.0556 0.007 0.25, -0.26 0.30, -0.31	(1) (2) (3) $\omega -2\theta$ scan Scan 0-25 times scan range before and after scan 1-0 + 0-15tan θ 1-0 + 0-15tan θ 0-80 + 0-15tan θ 1-3-8-5 1-3-16-5 1-3-16-5 3-152 3-152 3-152 3-152 38-4 29-6 22-2 1-000-1-041 1-000-1-005 1-000-1-002 0,0, -24 0, -10, -9 0, -15, -13 8,11,24 22,10,9 6,15,13 2927, 2565 2377, 2250 3112, 2784 0-026 0-019 0-013 0-35 × 0-30 × 0-165 0-425 × 0-22 × 0-035 0-42 × 0-175 × 0-15 0-0116 0-00350 0-00820 (001),(011),(102) {100},(01) {011},100,T01 111,210,IT0 T0T,010 111,210,IT0 T0T,010 2330 1874 2692 233 215 258 1-3 (2) × 10^{-6} 3-8 (10) × 10^{-7} 3-6 (4) × 10^{-6} 1-576 1-391 1-567 0-0361, 0-0476 0-0369, 0-0466 0-0291, 0-0425 0-0423 0-0556 0-0312 0-002 0-007 0-0001 0-25, -0.26 0-30, -0.31 0-34, -0.28				

Notes: (a) Unit-cell parameters were obtained by least-squares refinement of the setting angles of 25 reflections with $55 \cdot 3 < 2\theta < 59 \cdot 1^{\circ}$ for (1), $46 \cdot 6 < 2\theta < 57 \cdot 2^{\circ}$ for (2), $52 \cdot 9 < 2\theta < 59 \cdot 1^{\circ}$ for (3), and $39 \cdot 6 < 2\theta < 58 \cdot 4^{\circ}$ for (4). (b) Enraf-Nonius CAD-4 diffractometer with a graphite monochromator was used. Data reduction was accomplished with the *SDP-Plus* software (Frenz, 1985). Crystal and instrument stabilities were monitored by remeasurement of three check reflections every hour [(1) 2.2.10, 25\overline{2} and $4\overline{2}2;$ (2) $62\overline{4}, \overline{2}42$ and 531; (3) $14\overline{5}, 253$ and $1\overline{5}4;$ (4)119, 128 and $4\overline{1}2]$. A linear fit of the intensities of these reflections was used to correct the data . (c) Function minimized was $\sum w(|F_c| - |F_c|)^2$, where $w^{-1} = (\sigma_F^2 + 0.004F^2)$ was used for all structures. $R = \sum ||F_g| - |F_c||/\sum |F_o|; wR = [\sum w(|F_o| - |F_c|)^2/\sum w|F_o|^2|^{1/2}$. $S = [\sum w(|F_o| - |F_c|)^2/(m - n)]^{1/2}$. $\sigma_F = F\sigma_1/2I; \sigma_I = [N_{pk} + N_{bg1} + N_{bg2}]^{1/2}$.

The sugar moiety. The conformational parameters (according to Altona & Sundaralingam, 1972) of the furanose moieties are given in Table 7. Each compound possesses a distinct sugar conformation. The C5'-O5' side chains assume the gauche⁻-gauche orientation only for the syn conformations; the others have the gauche⁺-trans orientation. Although there are several significant differences in bond lengths of corresponding bonds in the four structures, bond lengths are generally consistent among them and all fall into normal ranges.

Packing. The hydrogen bonding in the four structures is detailed in Table 8 and illustrated in the packing diagrams of Figs. 5-8. The nucleoside base rings in the methoxy compound (1) are layered parallel to the bc plane with a separation of approximately 3.5 Å; however, the stacking is limited to sandwiching of the methoxy groups between pyridine rings of the two adjacent layers as suggested in Fig. 5. Thus, C11 is 3.554 (3) and 3.448 (3) Å from C8 atoms of adjacent molecules; C4, which is approximately on a 2_1 axis, is 3.503(2) Å from both C4 atoms of adjacent pyridine rings. Both hydroxyl group hydrogens are involved in moderately strong hydrogen bonding as detailed in Table 8; O5'-H...N7 is an intramolecular hydrogen bond and O3'-H...O5' is an intermolecular bond linking molecules along the b axis. A weak $C6-H6\cdots O3'$ interaction appears likely.

The base rings in compound (2) are parallel to the $(10\overline{2})$ plane although the layering is staggered. The

dimeric molecules about the twofold axis, which are reciprocally hydrogen bonded through N7—H…O5' bonds, have base separation of approximately 4 Å, a distance dictated by the positioning of the sugar C5'—O5' side chains which are involved in the hydrogen bonds. The base separation between adjacent dimeric units is less than 4 Å [closest interatomic distance is C9…C9 at 3.723 (4) Å] which suggests that there are no appreciable base stacking interactions in this structure. The dimers are linked along the *b* axis through pairs of strong O5'—H…O10 hydrogen bonds. Along the *a* axis the dimers are linked by a single O3'—H…N2 hydrogen bond of moderate strength.

Planes of the base rings related by unit translations along the a axis in the arabinoside (3) are separated by ~ 3.4 Å. There is no base stacking, although the base rings have close contacts with the C4-O10 bond (within 3.35 Å of C8) on one side of the base ring and O4' (within 3.14 Å of C8) on the other side (Fig. 7*a*). Unlike the packing in nucleosides (1), (2)and (4), all bases do not lie in nearly parallel planes. This may result from the presence of the water of solvation in the lattice which forms a hydrogenbonded chain parallel to the a axis. There are eight fairly strong [maximum $H \cdots A$ distance is 2.01 (4) Å] hydrogen bonds (including the intramolecular bond N7-H...O5') which involve all of the amino and hydroxyl protons. Only the 4-oxo compounds (2) and (3) exhibit hydrogen bonding interactions involving N2 which, in conjunction with the longer

Table 2. Positional and isotropic thermal parameters Table 4. Positional and isotropic thermal parameters $(Å^2)$ for atoms in (1)

 $(Å^2)$ for atoms in (3)

	x	у	z	U/U _{eq} *		x	у	z	U/U_{eq}^*
NI	0.8045 (3)	0.61109 (14)	0.44745 (7)	0.0478 (5)	NI	0.9005 (2)	0.75	0.32251 (11)	0.0302 (3)
N2	0.8123 (3)	0.6425 (2)	0.51711 (8)	0.0611 (6)	N2	0.8373 (3)	0.83482 (14)	0.39533 (12)	0.0379 (4)
C3	0.8148 (4)	0.5171 (2)	0.54973 (10)	0.0591 (6)	C3	0.6361 (4)	0.8870 (2)	0.33935 (14)	0.0379 (4)
C4	0.8072 (2)	0.2473 (2)	0.50511 (9)	0.0453 (5)	C4	0.3665 (3)	0.85951 (15)	0.13059 (13)	0.0328 (4)
C5	0-8000 (3)	0.1760 (2)	0.44202 (10)	0.0496 (5)	C5	0.3717 (4)	0.7839 (2)	0-03314 (14)	0.0383 (4)
C6	0.7925 (3)	0.2548 (2)	0.37924 (10)	0.0465 (5)	C6	0.5505 (3)	0.7014 (2)	0.03431 (13)	0.0362 (4)
N7	0.7916 (2)	0.39863 (14)	0.37359 (7)	0.0419 (4)	N7	0.7352 (3)	0.68307 (14)	0.12624 (10)	0.0319 (3)
C8	0.8025 (3)	0.4649 (2)	0.43639 (8)	0.0403 (4)	C8	0.7359 (3)	0.75107 (15)	0.22146 (12)	0.0273 (3)
C9	0.8090 (3)	0.3997 (2)	0.50242 (9)	0.0446 (5)	C9	0.5620 (3)	0.83844 (15)	0.22698 (13)	0.0306 (4)
O10	0.8128 (2)	0.1861 (2)	0.56878 (7)	0.0617 (5)	O10	0.2004 (3)	0.93674 (14)	0-13052 (11)	0.0430 (4)
CH	0.8101 (4)	0.0297 (3)	0.5721 (2)	0.0686 (8)	Cl	1.0825 (3)	0.66840 (14)	0.37302 (12)	0.0282 (4)
Cl	0.8005 (3)	0.7280 (2)	0.39691 (9)	0.0466 (5)	C2′	0.9267 (3)	0.58207 (15)	0.44486 (12)	0.0293 (3)
C2′	0.9639 (3)	0.7293 (2)	0.34456 (10)	0.0474 (5)	C3′	0.8990 (3)	0.49391 (14)	0.35119 (13)	0.0284 (4)
C3′	0.8732 (3)	0.8089 (2)	0.28298 (9)	0.0435 (5)	C4′	1.1729 (3)	0.50285 (15)	0.28778 (13)	0.0293 (4)
C4′	0.6644 (3)	0-7632 (2)	0.28606 (9)	0.0428 (5)	C5′	1-1914 (3)	0.4529 (2)	0.16277 (15)	0.0374 (4)
C5′	0.6092 (3)	0.6424 (2)	0.23677 (11)	0.0515 (6)	O2′	0.6731 (2)	0.6146 (2)	0.49079 (10)	0.0407 (3)
O3′	0.8805 (3)	0.96236 (13)	0.29196 (8)	0.0586 (5)	O3′	0.8402 (3)	0.39340 (13)	0.39936 (11)	0.0403 (3)
04′	0.6302 (2)	0.71467 (14)	0.35678 (6)	0.0474 (4)	04′	1.2120 (2)	0.61591 (13)	0.27589 (8)	0.0304 (3)
O5′	0.7331 (2)	0.51995 (13)	0.24063 (7)	0.0517 (4)	O5′	0.9879 (3)	0.4988 (2)	0.08607 (12)	0.0545 (4)
H3	0.827 (4)	0.516 (3)	0.6029 (14)	0.076 (7)	OW1	0.2255 (3)	1.1154 (2)	0.26350 (12)	0.0492 (4)
H5	0.794 (4)	0.073 (2)	0.4399 (11)	0.058 (6)	OW2	0.7369 (4)	0.2175 (2)	0.2567 (2)	0.0628 (5)
H6	0.790 (3)	0.202 (2)	0.3349 (11)	0.055 (5)	H3	0.572 (5)	0.948 (2)	0.380 (2)	0.048 (6)
HIIA	0.689 (5)	-0.009 (3)	0.550 (2)	0.091 (9)	H5	0.2252 (5)	0.788 (2)	-0.035 (2)	0.043 (5)
H11 <i>B</i>	0.810 (5)	0.012 (3)	0.619 (2)	0.115 (12)	H6	0.565 (5)	0.653 (2)	-0.034 (2)	0.045 (6)
H11C	0-925 (4)	−0 ·006 (3)	0.5499 (15)	0.081 (8)	H7	0.838 (5)	0.623 (2)	0.122 (2)	0.056 (6)
HI'	0.806 (3)	0.819 (2)	0.4200 (11)	0.055 (6)	HI'	1.214 (4)	0.706 (2)	0.426 (2)	0.035 (5)
H2'A	0-996 (3)	0.631 (2)	0.3285 (10)	0.046 (5)	H2′	1.055 (4)	0.5561 (14)	0.511 (2)	0.021 (4)
H2'B	1.077 (4)	0.782 (3)	0.3618 (12)	0.068 (7)	H3′	0.759 (4)	0.5073 (15)	0.295 (2)	0.023 (4)
H3′	0.933 (3)	0.781 (2)	0.2392 (11)	0-049 (6)	H4′	1.322 (5)	0.474 (2)	0.340 (2)	0.041 (5)
H4′	0·579 (3)	0.850 (2)	0·2767 (9)	0.039 (5)	H5'A	1.170 (4)	0.373 (2)	0.171 (2)	0.030 (4)
H5'A	0.475 (4)	0.610 (3)	0.2459 (13)	0.064 (6)	H5'B	1.385 (5)	0.466 (2)	0.130 (2)	0.050 (6)
H5' <i>B</i>	0·610 (4)	0.677 (3)	0.1888 (12)	0.067 (7)	H <i>O</i> 2′	0.699 (5)	0.618 (2)	0.569 (3)	0.058 (7)
HO3'	0·996 (5)	0.985 (3)	0.2898 (13)	0.068 (7)	H <i>O</i> 3′	0.958 (6)	0.382 (2)	0.459 (2)	0.059 (7)
H <i>O</i> 5'	0·732 (4)	0.489 (3)	0.284 (2)	0.077 (8)	H <i>O5′</i>	0.975 (6)	0.470 (2)	0.010 (3)	0.061 (8)
					HW1A	0.205 (6)	1.048 (2)	0.231 (3)	0.062 (7)
* For	non-H atoms I	I is $II = \frac{1}{2} \sum II$.	a*a* 4. where	A. is the dot	HW1B	0.038 (10)	1.147 (3)	0.251 (4)	0.119 (13)
nroduct c	of the th and th	direct space unit	$m_i = m_{ij}$, where m_i	my is the dot	H <i>W</i> 2A	0.725 (6)	0.266 (2)	0-312 (3)	0.060 (7)
product		i uncer-space unit-	ten vectors.		H <i>W</i> 2 <i>B</i>	0.596 (9)	0.186 (4)	0.269 (3)	0.091 (12)

* For non-H atoms, U is $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* A_{ij}$, where A_{ij} is the dot product of the ith and jth direct-space unit-cell vectors.

Table 3.	Positional and	d isotropic	thermal	parameters
	(Ų) fa	or atoms in	ı (2)	-

Table 5. Positional and isotropic thermal parameters $(Å^2)$ for atoms in (4)

								• •	
	x	у	Z	U/U_{co}^*					
NI	0.54905 (11)	0.478741	0.2736 (3)	0.0382 (7)		x	У	Z	U/U _{eq} *
N2	0.61603 (12)	0.5757 (4)	0.3133 (4)	0.0482 (9)	NI	0.8383 (2)	0.42225 (14)	0.59485 (6)	0.0314 (4)
C3	0.58691 (15)	0.7209 (4)	0·2879 (4)	0.0477 (10)	N2	0.8336 (2)	0.5500 (2)	0.55004 (7)	0.0387 (4)
C4	0.4395 (2)	0-8435 (4)	0.1929 (4)	0.0383 (8)	C3	0.8381 (3)	0.4880 (2)	0.48790 (8)	0.0414 (5)
C5	0-3582 (2)	0.7808 (4)	0.1496 (4)	0.0422 (9)	C4	0.8471 (3)	0.1886 (2)	0.44287 (9)	0.0427 (5)
C6	0.3429 (2)	0-6240 (4)	0.1479 (4)	0-0393 (9)	C5	0.8511 (3)	0.0356 (2)	0.46988 (9)	0.0441 (5)
N7	0.40250 (11)	0.5128 (3)	0.1846 (3)	0.0345 (7)	C6	0.8561 (3)	0.0132 (2)	0.54141 (9)	0.0410 (5)
C8	0.47999 (13)	0.565 (4)	0.2296 (3)	0.0317 (7)	N7	0.8538 (2)	0.1314 (2)	0.58815 (6)	0.0343 (4)
C9	0.50105 (14)	0.7231 (4)	0.2352 (3)	0.0356 (8)	C8	0.8438 (2)	0.2790 (2)	0.56011 (7)	0.0292 (4)
O10	0.45478 (12)	0.9870 (3)	0.1950 (3)	0.0537 (9)	C9	0.8434 (3)	0.3166 (2)	0.48951 (8)	0.0356 (5)
CI'	0.55913 (13)	0.3117 (3)	0.3115 (3)	0.0340 (8)	Cl'	0.8165 (2)	0.4479 (2)	0.66777 (7)	0.0265 (4)
C2′	0.6187(2)	0.2283 (4)	0.2388 (4)	0.0395 (9)	C2′	0.9426 (2)	0.5868 (2)	0.69437 (8)	0.0283 (4)
C3′	0.68842 (14)	0.1786 (4)	0.4078 (3)	0.0332 (8)	C3′	0.8222 (2)	0.6512 (2)	0.75359 (8)	0.0308 (4)
C4'	0.64683 (13)	0.1671 (3)	0.5461 (3)	0.0332 (8)	C4′	0.6190 (2)	0.6356 (2)	0.72483 (8)	0.0280 (4)
C5′	0.70264 (14)	0.1872 (4)	0.7372 (3)	0.0364 (8)	C5′	0.5610 (2)	0.7780 (2)	0.68034 (10)	0.0370 (5)
03'	0.72442 (11)	0.0353 (3)	0.3817 (3)	0.0411 (6)	O2′	1.1269 (2)	0.5319 (2)	0.71342 (7)	0.0410 (4)
04'	0-59058 (11)	0.2960 (3)	0.5016 (2)	0.0424 (6)	O3′	0.8368 (2)	0.54893 (15)	0.81277 (6)	0.0379 (3)
05'	0.66029 (10)	0.2038 (3)	0.8605 (2)	0.0357 (6)	O4′	0.6217 (2)	0.48807 (12)	0.68490 (6)	0.0300 (3)
H3	0.624(2)	0-802 (4)	0-306 (4)	0.049 (8)	O5′	0.3600 (2)	0.76720 (15)	0.66306 (7)	0.0388 (4)
H5	0.315 (2)	0.854 (4)	0.115 (4)	0.047 (9)	H3	0.836 (3)	0.561 (2)	0·4474 (11)	0.045 (6)
H6	0.291 (2)	0.572 (4)	0.120 (5)	0.059 (10)	H4	0.851 (3)	0.203 (3)	0.3937 (12)	0.054 (6)
H7	0.386 (2)	0.402 (4)	0.188 (4)	0.044 (8)	H5	0.850 (4)	-0.060 (3)	0.4407 (12)	0.048 (6)
HI'	0.501 (2)	0.266 (3)	0.255 (3)	0.025 (6)	H6	0.860 (3)	-0.096 (2)	0.5582 (10)	0.037 (5)
H2'A	0.592 (2)	0.136 (4)	0.160 (4)	0.046 (8)	H1′	0.846 (3)	0.346 (2)	0.6897 (8)	0.024 (4)
H2'B	0.639 (2)	0.293 (4)	0.165 (4)	0.051 (8)	H2′	0·946 (3)	0.664 (2)	0.6579 (9)	0.025 (4)
H3′	0.730 (2)	0.263 (4)	0.447 (5)	0.066(11)	H3′	0.860 (3)	0.762 (2)	0.7676 (11)	0-045 (5)
H4'	0.616 (2)	0.062 (4)	0.525 (4)	0.039 (7)	H4′	0.524 (3)	0.621 (2)	0.7613 (10)	0.030 (4)
H5'A	0.738 (2)	0.277 (4)	0.748 (4)	0.043 (8)	H5'A	0.630 (4)	0.780 (3)	0.6346 (13)	0.065 (7)
H5'B	0.741 (2)	0.099 (4)	0.773 (4)	0.048 (8)	H5'B	0.584 (3)	0.879 (3)	0.7046 (12)	0.050 (6)
HO3'	0.770 (3)	0.032 (7)	0.480 (7)	0.11(2)	HQ2'	1.209 (4)	0.600 (3)	0.6983 (13)	0.055 (7)
HO5'	0.621 (2)	0.123 (5)	0.843 (5)	0.066 (11)	H03'	0.937 (4)	0.563 (3)	0.8348 (13)	0.056 (7)
	(-)	(0)		()	H05'	0.309 (4)	0.849 (3)	0.6744 (13)	0.058 (7)

* For non-H atoms, U is $U_{eq} = \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* A_{ij}$, where A_{ij} is the dot product of the *i*th and *j*th direct-space unit-cell vectors.

* For non-H atoms, U is $U_{eq} = \frac{1}{2} \sum_i \sum_j U_{ij} a_i^* a_j^* A_{ij}$, where A_{ij} is the dot product of the *i*th and *j*th direct-space unit-cell vectors.

794

and (4)

	(1)	(2)	(3)	(4)
N2-NI	1.364 (2)	1.377 (3)	1.377 (2)	1.371 (2)
C8-N1	1.366 (2)	1.352 (3)	1.355 (2)	1.366 (2)
CI'-NI	1.449 (2)	1.452 (3)	1,462 (2)	1.441(2)
C3_N2	1.315 (2)	1,325 (5)	1.321 (2)	1.312 (2)
C9-C2	1.412 (2)	1.411 (3)	1.321(2)	1.421 (2)
	1.412 (2)	1.444 (4)	1.426 (2)	1.421 (3)
CJ-C4	1.373 (3)	1.444 (4)	1.430 (2)	1.373 (3)
C9-C4	1.408 (2)	1.438 (4)	1.433 (2)	1.395 (3)
	1.404 (3)	1.300 (3)	1.338 (3)	1.403 (2)
N/C6	1.332 (2)	1.362 (4)	1.357 (2)	1.336 (2)
C8—N7	1.350 (2)	1.351 (3)	1.354 (2)	1.341 (2)
C9—C8	1.399 (2)	1.391 (4)	1.394 (2)	1.407 (2)
C2'-C1'	1.519 (3)	1.533 (4)	1.554 (2)	1.534 (2)
04'—C1'	1.422 (2)	1.420 (3)	1.415 (2)	1.429 (2)
C3'—C2'	1.526 (3)	1.522 (3)	1.522 (2)	1.518 (2)
C4′—C3′	1.521 (3)	1.519 (4)	1.519 (2)	1·519 (2)
O3'—C3'	1.428 (2)	1.421 (4)	1.409 (2)	1.432 (2)
C5'—C4'	1.511 (3)	1.498 (3)	1.515 (2)	1.517 (2)
04′—C4′	1.444 (2)	1.433 (4)	1.450 (2)	1.448 (2)
O5'—C5'	1.426 (2)	1.428 (4)	1.411 (2)	1.434 (2)
O10C4	1.343 (2)	1.250 (4)	1.268 (2)	
C11-010	1.445 (3)		_ `	_
O2′—C2′	_ ``		1.403 (2)	1.405 (2)
NO NI 00				
N2-N1-C8	111-20 (13)	110-2 (2)	109-43 (11)	110.96 (13)
C8-NI-CI	129.24 (14)	128-2 (2)	131-34 (11)	128.11 (12)
CI'—NI—N2	119.56 (13)	120.6 (2)	118-10 (12)	120.53 (12)
C3—N2—N1	106-03 (14)	105-9 (2)	106-95 (13)	106-34 (14)
C9-C3-N2	111-8 (2)	111.7 (3)	111-1 (2)	111-82 (14)
CS-C4-C9	116.5 (2)	112.7 (3)	113.9 (2)	117.0 (2)
C6-C5-C4	120.2 (2)	122.7 (3)	121-74 (14)	120.1 (2)
N7-C6-C5	125.9 (2)	123-1 (2)	123.5 (2)	125-2 (2)
C8-N7-C6	112.27 (14)	116.7 (3)	117-2 (2)	113-17 (14)
C9-C8-NI	106-55 (14)	108-3 (2)	108-71 (13)	106-83 (13)
C9-C8-N7	127-58 (14)	123-9 (2)	123.09 (13)	126.75 (14)
NI-C8-N7	125-85 (14)	127.8 (3)	128-18 (14)	126-39 (13)
C3-C9-C4	138-1 (2)	135-3 (3)	135.6 (2)	138-2 (2)
C3-C9-C8	104-41 (14)	103·9 (2)	103.80 (13)	104 04 (13)
C4C8C8	117-53 (15)	120.9 (2)	120.60 (14)	117.7 (2)
C2′—C1′—O4′	105-97 (14)	107·2 (2)	106-34 (14)	106-51 (11)
C2'-C1'-NI	115.5 (2)	115-1 (2)	113.07 (11)	112.48 (12)
04'-Cl'-Nl	108-17 (15)	106-6 (2)	108-71 (11)	111-26 (12)
C3′—C2′—C1′	101.5 (2)	103.7 (2)	102-12 (11)	101.93 (12)
C4′—C3′—O3′	107.74 (15)	113.6 (2)	115-19 (14)	108.08 (13)
C4′—C3′—C2′	103-63 (14)	102.5 (2)	100.88 (12)	101 53 (12)
O3'-C3'-C2'	111.71 (15)	111.7 (2)	115.09 (12)	111-18 (13)
C5′—C4′—O4′	108-22 (14)	108.0 (2)	108-65 (13)	110.78 (13)
C5'-C4'-C3'	115.20 (15)	114.7 (2)	116.91 (13)	112.88 (13)
O4′—C4′—C3′	106.32 (14)	103.6 (2)	103.43 (13)	104.91 (12)
O5'-C5'-C4'	113.4 (2)	113.3 (2)	108-40 (15)	110-00 (13)
CI'-04'-C4'	109-87 (13)	108-0 (2)	109-55 (11)	109-47 (11)
C9-C4-O10	116.9 (2)	123.7 (2)	123.8 (2)	
010	126.6 (2)	123 5 (3)	122.29 (14)	_
C11-010-C4	117.4 (2)			_
C3'-C2'-O2'			113.06 (12)	114-41 (13)
02'-C2'-C1'	_	_	114.7 (2)	111-29 (13)

Fig. 1. Perspective drawing of (1) illustrating atom labeling and the O5'-H...N7 intramolecular hydrogen bond (thin line).

Table 6. Bond lengths (Å) and angles (°) in (1), (2), (3) N2-C3 and N1-N2 bond lengths in these two structures compared to (1) and (4), suggests greater electron density at N2 in the former two nucleosides.

The riboside (4) has the most complete base stacking of the four compounds studied (Fig. 8a). The base rings are parallel to the bc plane as in (1), stacked in antiparallel fashion along the 21 axes perpendicular to this plane, which axes coincide with the long axis of the crystalline needle; thus, the stacks form rows parallel to the *ab* plane between

Fig. 2. Perspective drawing of (2) showing atom labeling.

Fig. 3. Perspective drawing of (3) illustrating atom labeling and the N7-H-O5' intramolecular hydrogen bond (thin line). Also included are the two hydrogen-bonded waters of solvation.

Fig. 4. Perspective drawing of (4) showing atom labeling.

Table 7. Selected torsion angles (°) and conformational parameters in (1), (2), (3) and (4)

		(1)	(2)	(3)	(4)
θο	C1'-C2'-C3'-C4'	- 33-2 (2)	25.4 (3)	37-13 (14)	- 37.93 (14)
θ	C2'-C3'-C4'-O4'	21.2 (2)	- 37.8 (3)	-41.38 (13)	36-46 (14)
θ2	C3'-C4'-O4'-C1'	-4 (2)	36.5 (3)	29.79 (13)	- 20.28 (14)
θ,	C4'O4'-C1'-C2'	- 22.2 (2)	-20.0 (3)	- 5-59 (13)	-4.4 (2)
θ4	O4'-C1'-C2'-C3'	34-4 (2)	-4.6 (3)	- 20.60 (13)	26.99 (14)
x	04'-C1'-N1-N2	- 120.9 (2)	67.7 (3)	- 155-55 (12)	72.7 (2)
x	O4'-C1'-N1-C8	59.4 (3)	-99.6 (3)	38-0 (2)	-99.4 (2)
Ψoo	O4'-C4'-C5'-O5'	- 68.6 (2)	54.6 (3)	- 58.6 (2)	70-9 (2)
Ψœ	C3'-C4'-C5'-O5'	50-2 (2)	169-5 (3)	57.9 (2)	- 171-78 (13)
Glysosidic	conformation	syn	anti	syn	anti
P (°) pseu	dorotation angle*	160.7	48-9	26.2	192-3
$\tau_{\rm m}$ (°) amp	litude of pucker*	35-2	38.7	41-4	38-8
Sugar con	formation*	C2-endo	C4-exo	C3-endo	C3-exo
		² E	4T ³	³ T ₄	₃ T ²
C5′—O5′	orientation ,	gg	gt	gg	gt

* See Altona & Sundaralingam (1972).

Table 8. Hydrogen bonding in (1), (2), (3) and (4)

D	-н •	·· A	Symmetry of A relative to D	d (D…A) (Å)	d (H…A) (Å)	(D—H…A) (°)
ā)				()	()	
Čć	H6	03′	$x_{1} y = 1, z$	3.234 (2)	2.45 (2)	137- (2)
03'	HO3'	05'	2 - x, $0.5 + y$, $0.5 - z$	2.824 (2)	2.01 (3)	165. (2)
O5′	H05'	N7	x, y, z	2.808 (2)	1.94 (3)	165. (3)
(2)						
N7	H7	O5′	1 - x, y, 1 - z	2.825 (4)	1.85 (4)	166. (3)
03'	HO3'	N2	1.5 - x, $y = 0.5$, $1 - z$	3.005 (3)	2.12 (6)	167. (5)
05'	H05'	O10	1 - x, y - 1, 1 - z	2.652 (3)	1.71 (4)	176 (4)
(3)						
N7	H7	05'	x. y. z	2.678 (2)	1.78 (3)	167- (2)
02'	HO2'	0W1	1 - x, y = 0.5, 1 - z	2.733 (2)	1.87 (3)	175 (3)
03'	HO3'	N2	2 - x, y - 0.5, 1 - z	2.819 (2)	1.96 (3)	167. (3)
05'	H05'	O10	1 - x, y - 0.5, -z	2.650 (2)	1.80 (3)	154. (3)
01/1	H <i>W</i> 1A	O10	x, y, z	2.693 (2)	1.79 (3)	163 (3)
01/1	H#/1 <i>B</i>	0#2	x = 1, y + 1, z	2.704 (2)	1.72 (5)	168 (4)
OW2	HW2A	O3′	x, y, z	2.762 (3)	1.95 (3)	155- (3)
O₩2	HW2B	0#/1	x, y = 1, z	2.805 (2)	2.01 (4)	168 (4)
(4)						
Ċ3′	H3′	O2′	2-x, 0.5+y, 1.5-z	3.239 (2)	2.27 (2)	165- (2)
02′	H02'	O5'	1 + x, y, z	2.715 (2)	1.87 (2)	172. (2)
O3′	H03'	N7	2-x, 0.5+y, 1.5-z	2.961 (2)	2.16 (3)	164 (2)
O5′	H <i>O5</i> '	03'	1 - x, $0.5 + y$, $1.5 - z$	2.745 (2)	1.96 (3)	170. (3)

Fig. 5. Unit-cell projection of (1) viewed along the a axis. A single molecule has been shaded. Sugar CH hydrogens have been omitted for clarity. Hydrogen bonds are indicated by thin lines.

which the ribose moieties reside. The interplanar spacing of the rings is about 3.4 Å [closest contact is C3...C6 of 3.387(3) Å]. There is a very close intermolecular C3'—H3'...O2' contact linking sugar moieties along the *b* axis; this is the only manner in which O2' acts as a proton acceptor. The

Fig. 6. Unit-cell projection of (2) viewed approximately perpendicular to the base plane of the shaded molecule. Sugar CH hydrogens have been omitted for clarity. Hydrogen bonds are indicated by thin lines.

O3'—H…N7 and O5'—H…O3' interactions also link molecules along the *b* axis whereas the O2'—H…O5' hydrogen bonding binds molecules translated along the *a* axis, skipping the 2_1 -related molecules. Thus, the structure along the *c* axis is bound only by the zipper-like base stacking interactions (illustrated in

Fig. 7. (a) Unit-cell projection of (3) viewed perpendicular to the base plane of the shaded molecule. Sugar CH hydrogens have been omitted. Hydrogen bonds are indicated by thin lines. (b) Unit-cell projection viewed approximately along the a axis illustrating the channel occupied by the hydrogen-bonded chain of water molecules.

Fig. 8. Packing diagrams of unit cell of (4). Sugar CH hydrogens (except H3') have been omitted. Hydrogen bonds are indicated by thin lines. (a) Projection along the a axis illustrating the base stacking and high degree of overlap. (b) Projection along the b axis showing the zipper-like base stacking and the lack of hydrogen bonding interactions in the c direction.

Fig. 8b), a feature resulting from the absence of hydrogen-bondable functions on the base ring opposite the ribose moiety.

References

- Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205–8212.
- CLINE, B. L., PANZICA, R. P. & TOWNSEND, L. B. (1978). J. Org. Chem. 43, 4910–4915.
- CORDES, A. W. (1983). Personal communication.
- COTTAM, H. B., PETRIE, C. R., MCKERNAN, P. A., GOEBEL, R. J., DALLEY, N. K., DAVIDSON, R. B., ROBINS, R. K. & REVANKAR, G. R. (1984). J. Med. Chem. 27, 1119–1127.
- CRISTALLI, G., FRANCHETTI, P., GRIFANTINI, M., VITTORI, S., BORDONI, T. & GERONI, C. (1987). J. Med. Chem. 30, 1686–1688.
- CRISTALLI, G., FRANCHETTI, P., GRIFANTINI, M., VITTORI, S., KLOTZ, K.-N. & LOHSE, M. J. (1988). J. Med. Chem. 31, 1179-1183.
- FRENZ, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- ITOH, T., KITANO, S. & MIZUNO, Y. (1972). J. Heterocycl. Chem. 9, 465–470.
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- LICHTENTHALER, F. W. & CUNY, E. (1981). Chem. Ber. 114, 1610-1623.
- MEYER, R. B. JR, REVANKAR, G. R., COOK, P. D., EHLER, K. W., Schweizer, M. P. & ROBINS, R. K. (1980). J. Heterocycl. Chem. 17, 159-169.
- REVANKAR, G. R., GUPTA, P. K., ADAMS, A. D., DALLEY, N. K., MCKERNAN, P. A., COOK, P. D., CANONICO, P. G. & ROBINS, R. K. (1984). J. Med. Chem. 27, 1389–1396.
- SANGHVI, Y. S., LARSON, S. B., WILLIS, R. C., ROBINS, R. K. & REVANKAR, G. R. (1989). J. Med. Chem. 32, 945–951.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

Acta Cryst. (1990). C46, 797-799

Isotypic Structures of (I) Tri(2-hydroxyethyl)ammonium Hydrogensulfide and (II) Tri(2-hydroxyethyl)ammonium Chloride

BY DIETRICH MOOTZ, DIETER BRODALLA AND MICHAEL WIEBCKE

Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-4000 Düsseldorf, Federal Republic of Germany

(Received 26 July 1989; accepted 14 August 1989)

Abstract. (I) [NH(CH₂CH₂OH)₃]HS, $M_r = 183.27$, trigonal, R3c, a = 8.394 (2), c = 23.513 (4) Å, V = 1434.8 Å³, Z = 6, $D_x = 1.27$ Mg m⁻³, λ (Mo K $\overline{\alpha}$) = 0.71069 Å, $\mu = 0.291 \text{ mm}^{-1}$, F(000) = 600, room temperature, R = 0.022 for 278 unique observed reflections. (II) [NH(CH₂CH₂OH)₃]Cl, $M_r = 185.65$,

0108-2701/90/050797-03\$03.00 © 1990 International Union of Crystallography